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Abstract. We consider a general approach for the convergence analysis of proximal-like methods
for solving variational inequalities with maximal monotone operators in a Hilbert space. It proves to
be that the conditions on the choice of a non-quadratic distance functional depend on the geometrical
properties of the operator in the variational inequality, and — in particular — a standard assumption
on the strict convexity of the kernel of the distance functional can be weakened if this operator
possesses a certain ‘reserve of monotonicity’. A successive approximation of the ‘feasible set’ is
performed, and the arising auxiliary problems are solved approximately. Weak convergence of the
proximal iterates to a solution of the original problem is proved.
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1. Introduction

Let (X, ‖·‖) be a Hilbert space with the topological dual X′ and the duality pairing
〈·, ·〉 between X and X′. We consider the variational inequality

(P ) find x∗ ∈ K such that ∃q ∈ Q(x∗) : 〈q, x − x∗〉 � 0 ∀x ∈ K,

where K ⊂ X is a convex closed set and Q : X → 2X′ is a maximal monotone
operator.

We generally suppose that (P ) is solvable and denote by X∗ its solution set.
The proximal point method (PPM), originally introduced by Martinet [22] to

solve convex variational problems and later on investigated in a more general set-
ting by Rockafellar [27], has initiated a lot of new algorithms for solving various
classes of variational inequalities and related problems.

The exact proximal point method, applied to the variational inequality (P ), can
be described as follows:
x0 ∈ K and a sequence {χk}, 0 < χk � χ̄ <∞, are given;
xk+1 ∈ K is defined such that

∃ q(xk+1) ∈ Q(xk+1) : 〈q(xk+1)+ χk∇1D(xk+1, xk), y − xk+1〉 � 0 ∀y ∈ K,

where D(x, y) = 1
2‖x − y‖2 and ∇1 is the partial gradient w.r.t. x.
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For different modifications of the PPM, also with other quadratic functionals D,
we address the reader to [17, 19, 20], where numerous references can be found.

In the last decade, a new direction in the PPM’s has been extensively developed,
which is based on using non-quadratic ‘distance functionals’ D. The main motiva-
tion for such proximal methods is the following:
– the use of a non-quadratic proximal term permits, for certain classes of prob-

lems, to preserve the main merits of the classical PPM (good stability of the
auxiliary problems and convergence of the whole sequence of iterates to a solu-
tion of the original problem) and, at the same time, to guarantee that the iterates
stay in the interior of the set K;

– the application of non-quadratic proximal techniques (as in [3, 28, 29]) to the
dual of a smooth convex program leads to multiplier methods with twice or
higher differentiable augmented Lagrangian functionals. Moreover, in [3] the
Hessians of these functionals are bounded.

More motivation of non-quadratic proximal methods can be found in [2, 4, 11, 24].
For infinite-dimensional convex optimization problems such methods have been
studied in [1, 8, 7], and for variational inequalities in Hilbert spaces see [6].

The purpose of the present paper is a uniform approach for analyzing con-
vergence of proximal-like methods for solving variational inequalities in Hilbert
spaces. In comparison with preceding publications dealing with non-quadratic meth-
ods,
– the standard requirement of the strict monotonicity of the operator ∇1D(·, y)

(usually formulated as the strict convexity of Bregman’s or an other function
generating D) is weakened. This leads to an analogy of methods with weak
regularization and regularization on a subspace (developed on the basis of the
classical PPM in [18, 19]);

– a successive approximation of the set K is included.
Comparing with [6], here the class of operators Q is also extended (see the case D1
in Lemma 3 and Theorem 2) and the auxiliary problems are supposed to be solved
approximately.

The scheme studied here and called generalized proximal point method (GPPM)
can be described as follows: Taking a linear monotone operator B : X→ X′ such
that Q−B is still monotone, we choose a convex continuous functional h : S̄ → R

so that

x → 1

2
〈Bx, x〉 + h(x)

possesses properties like usually required for Bregman functions (with a zone S).
At the k-th step of the GPPM, with xk ∈ Kk−1 ∩ S obtained at the previous

iteration, the iterate xk+1 ∈ Kk ∩ S̄ is defined such that

∃q(xk+1) ∈ Q(xk+1) : 〈q(xk+1)+ χk(∇h(xk+1)− ∇h(xk)), x − xk+1〉
� −δk

√
�1(x, xk+1) ∀x ∈ Kk ∩ S̄. (1)



CONVERGENCE ANALYSIS OF NON-QUADRATIC PROXIMAL METHODS 121

Here, {Kk} is a sequence of convex sets approaching K, {χk} as above, {δk} is a
given non-negative sequence and

�1(x, y) = min{α‖x − y‖2, �(x, y) + 1}, α > 0− const., (2)

with

�(x, y) = 1

2
〈B(x − y), x − y〉 + h(x)− h(y)− 〈∇h(y), x − y〉 (3)

considered on dom� = S̄ × D(∇h) and used below as a Lyapunov function. The
choice δk ≡ 0 corresponds to the exact variant of the GPPM.

This scheme and the required conditions on h in Section 2 do not exclude the
use of quadratic functionals h, in particular, the choice h(x) = 1

2‖x‖2 leads to
a perturbed version of the classical proximal point method (for this version with
more general assumptions w.r.t. data approximation see [15]). Therefore, in the
sequel the notion ‘non-quadratic’ (methods) means, as well as in a series of pre-
ceding papers, not only quadratic (methods) and indicates the predominant aspect
of investigations.

The paper is organized as follows: In Section 2 conditions w.r.t. the successive
approximation of Problem (P ) and the regularizing functional are formulated as
well as discussed, and the criterion of inexact iterations (1) is analyzed. In Section 3
solvability of the auxiliary problems is studied, and finally in Section 4 convergence
of the GPPM is proved.

2. Generalized proximal point method

We make use of the following notations: S ⊂ X is an open convex set, its closure is
denoted by S̄; {Kk} ⊂ X, Kk ⊃ K, is a family of convex closed sets approximating
K;

NK : y →
{ {z ∈ X′ : 〈z, y − x〉 � 0 ∀x ∈ K} if y ∈ K

∅ otherwise

is the normality operator for K. The symbol ⇀ indicates weak convergence in X.
With B and h : S̄ → R as introduced, we define the functional

η(x) =
{

1
2〈Bx, x〉 + h(x) if x ∈ S̄

+∞ otherwise.

Now the following basic assumptions are considered.

ASSUMPTION 1. (On the successive approximation of Problem (P ) and the
choice of the controlling parameters)
(A1) For each k, the operator Q+NKk is maximal monotone;
(A2) S ∩D(Q) ∩Kk �= ∅ ∀k;
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(A3) For each k it holds

〈q(x) − q(y), x − y〉 � 〈B(x − y), x − y〉
∀x, y ∈ D(Q) ∩Kk, ∀q(·) ∈ Q(·),

where B : X→ X′ is a given linear continuous and monotone operator with
the symmetry property 〈Bx, y〉 = 〈By, x〉;

(A4) Any weak limit point of an arbitrary sequence {vk}, vk ∈ S ∩ D(Q) ∩ Kk ,
belongs to K ∩D(Q);

(A5) The non-negative sequences {ϕk} (accuracy of approximation), {χk} (regu-
larization parameter) and {δk} (exactness for solving the auxiliary problems)
satisfy

0 < χk � 1,

∞∑
k=1

ϕk

χk

<∞,

∞∑
k=1

δk

χk

<∞;

(A6) For some x∗ ∈ X∗ ∩ S̄ and q∗(x∗) ∈ Q(x∗) obeying

〈q∗(x∗), y − x∗〉 � 0 ∀y ∈ K,

and for an arbitrary sequence {vk}, vk ∈ S ∩ D(Q) ∩ Kk , there exists a
sequence {wk(vk)} ⊂ K ∩ S such that

〈q∗(x∗), wk(vk)− vk〉 � c
(
�(x∗, vk)+ 1

)
ϕk (c � 0− const.). (4)

Condition A6 seems to be rather artificial, especially, due to the unknown ele-
ment q∗(x∗). However, for a series of variational inequalities in mechanics and
physics, we have a helpful a priori information about q∗(x∗). So, for the problem
on a steady movement of a fluid in a domain � bounded by a semi-permeable
membrane (see [13], Sect. 1) q∗(x∗) = 0 has to be.

In the general situation, one can replace (4) by

‖wk(vk)− vk‖ � c1ϕk.

Because in (4) c is an arbitrary (non-negative) constant, this causes no alterations
in the analysis below.

REMARK 1. In [19] and [15], using the functional h such that

∃m > 0 : �(x, y) � m‖x − y‖2 ∀x, y,

more general approximations have been considered (Kk ⊃ K is not supposed),
mainly inspired by finite element methods in mathematical physics. Here we re-
nounce it in order to avoid too much technicalities.

ASSUMPTION 2. (Defining the regularizing functional h)
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(B1) h : S̄ → R is a convex and continuous functional;
(B2) h is Gâteaux-differentiable on S;
(B3) The functional η is strictly convex on S̄;
(B4) X∗ ∩ S̄ �= ∅;
(B5) The set L1(x, δ) = {y ∈ S : �(x, y) � δ} is bounded for each x ∈ S̄ and

each δ;
(B6) If the sequences {vk} ⊂ S, {yk} ⊂ S converge weakly to v and

limk→∞ �(vk, yk) = 0, then

lim
k→∞

[
�(v, vk)− �(v, yk)

] = 0;

(B7) If {vk} ⊂ S is bounded, {yk} ⊂ S, yk ⇀ ȳ and limk→∞ �(vk, yk) = 0, then
limk→∞ ‖vk − yk‖ = 0;

(B8) If {vk} ⊂ S, {yk} ⊂ S, vk ⇀ v, yk ⇀ y and v �= y, then

limk→∞
∣∣〈∇h(vk)+ Bvk −∇h(yk)− Byk, v − y〉∣∣ > 0;

(B9) ∀z ∈ X′ ∃x ∈ S : ∇h(x)+ Bx = z.

In [18] (Sect. 5), for two problems in elasticity theory the chosen regularizing
functionals satisfy the Assumptions 2 and A3, but they are not strictly convex (see,
there regularization on the kernel).

As it can be concluded from [7] (Sect. 2.1.2), condition B7 is equivalent to
the following sequential consistency property for the functional η on S: for any
non-empty bounded subset E ⊂ S and any t > 0

inf
x∈E

inf{η(y)− η(x) − 〈∇η(x), y − x〉 : y ∈ S̄, ‖y − x‖ = t} > 0.

For the case B = 0, the totality of conditions B1–B9 is similar to the system
of hypothesizes for Bregman functions in [6], only B7 is stronger than the cor-
responding assumption in the paper mentioned, where vk ⇀ ȳ stands in place of
limk→∞ ‖vk − yk‖ = 0. In the cases D2 and D3 (see Lemma 2 and Theorem 2
below), this assumption from [6] suffices if B is a compact operator. At the same
time, the use of B7 permits us, in particular, to extend the class of operators Q by
including the case D1.

If B = 0, X = R
n, the conditions B1–B9 can be derived from the standard

hypothesizes for Bregman functions (see the analysis in [6], Sect. 7).
The conditions B2 and B3 ensure that �(x, y) > 0, �1(x, y) > 0 hold for

x �= y, and obviously �(x, x) = 0, �1(x, x) = 0.
The consideration of an approximation of K by {Kk} addresses, in particular,

the situation when K is given in the form K = K1∩K2 and we choose h by taking
into account the set K1 only. In this case Kk = K1 ∩Kk

2 is natural.
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Let us give a simple example illustrating the choice of the functional h. Let
X = R

n,

K =

x ∈ R

n : xj � 0, j = 1, . . . , n1;
n2∑

j=n1+1

j |xj | � 1




with 0 < n1 < n2 < n,

Q : x → (A(x1, . . . , xn1), xn1+1 − 1, . . . , xn − 1),

where A : Rn1 → R
n1 is an arbitrary continuous and monotone operator such that

the corresponding Problem (P ) is solvable. Then, considering the approximation

Kk =

x ∈ R

n : xj � 0, j = 1, . . . , n1,

n2∑
j=n1+1

j

√
x2

j + τk � 1+√τk

n2∑
j=n1+1

j


 ,

where τk →+0, take

B : x → (0, . . . , 0, xn1+1, . . . , xn).

Since

Kk ⊂

x ∈ R

n : xj � 0, j = 1, . . . , n1;
n2∑

j=n1+1

j |xj | � 1+√τk

n2∑
j=n1+1

j


 ,

the estimate

min
z∈K
‖z − vk‖ � c1

√
τk ∀{vk}, vk ∈ Kk,

is evident.
Now, it is easy to verify that the choice of {Kk},

h(x) =
n1∑

j=1

xj ln xj − xj (with 0× ln 0 = 0 by convention)

and

S = {x ∈ R
n : xj > 0, j = 1, . . . , n1}

satisfies the conditions A1–A4, B1–B9, and A6 is fulfilled with ϕk = √τk. The

second condition in A5 forces
∑∞

k=1

√
τk

χk
<∞.

Now, let us recall the method under consideration.
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Generalized proximal point method (GPPM):

Let x1 ∈ S be arbitrarily chosen and at the (k − 1)-th step let xk ∈ Kk−1 ∩ S be
defined. In the k-th step solve

(P k
δk

) find xk+1 ∈ Kk ∩ S̄ such that ∃ q(xk+1) ∈ Q(xk+1) :
〈q(xk+1)+ χk(∇h(xk+1)−∇h(xk)), x − xk+1〉
� −δk

√
�1(x, xk+1) ∀x ∈ Kk ∩ S̄. (5)

By (P k
0 ), x̄k+1 we denote, respectively, Problem (5) with δk = 0 and its solution.

The criterion for the approximate calculation of x̄k+1 inserted in (P k
δk

) is not
suitable for a straightforward use, but it permits one to extend the convergence
results, obtained in this paper, to related algorithms with more reasonable criteria.
So, in [12], Eckstein has analyzed different accuracy conditions on the iterates of
Bregman–function-based methods for the inclusion

find z ∈ R
n : 0 ∈ T z, (6)

with T : Rn → 2R
n

a maximal monotone operator.
It is well-known that this problem with T : X → 2X′ is equivalent to the

Problem (P ) if T ≡ Q+NK and the operator Q+NK is maximal monotone. The
method studied in [12] has the form

0 ∈ χ−1
k T (xk+1)+∇g(xk+1)−∇g(xk)+ ek+1, (7)

under rather standard assumptions on a Bregman function g (here, ek+1 is an error
vector). Such a relaxation of the exact inclusion ((7) given with ek+1 = 0) is
considered in [12] as to be preferable for numerical implementations. Convergence
of the iterates xk generated in (7) to a solution of (6) is established obeying the
following conditions on a sequence of errors {ek}:

∞∑
k=1

‖ek‖ <∞ (8)

and
∞∑

k=1

〈ek, xk〉 <∞. (9)

Considering in the sequel method (7) with T = Q + NK on a pair (X, X′), we
have to take ‖ · ‖X′ in (8).
– If K ∩ S̄ is a bounded set&, then (9) follows immediately from (8). In this case,

one can easily see that (7) implies the validity of (5) given with an appropri-
ate α in (2) and δk = α−1/2χk‖ek+1‖X′ , such that (8) provides the condition

& This can be supposed for K ∩D(Q) ∩ S̄ instead of K ∩ S̄.
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∑∞
k=1 χ−1

k δk <∞ in A5 (naturally, for this comparison, we assume that B = 0,
Kk ≡ K and g = h; but the same arguments suit if g = h in (7) satisfies A3,
B1–B3 with B �= 0).
Indeed, taking α < (2 diam(K ∩ S̄))−2, the inequality

�1(x, y) = α‖x − y‖2 ∀x ∈ K ∩ S̄, y ∈ K ∩ S

follows from the definition of �1. Due to the definition of NK , one can rewrite
(7) as

〈χkek+1 + q(xk+1)+ χk(∇h(xk+1)−∇h(xk)), x − xk+1〉 � 0 ∀x ∈ K,

with q(xk+1) ∈ Q(xk+1), hence

〈q(xk+1)+ χk(∇h(xk+1)−∇h(xk)), x − xk+1〉
� −χk‖ek+1‖X′‖x − xk+1‖ ∀x ∈ K.

In view of the assumption {xk} ⊂ S made in [12] (see also Section 3 below),
�1(x, xk+1) = α‖x − xk+1‖2 holds for x ∈ K ∩ S̄, and together with the last
inequality this yields

〈q(xk+1)+ χk(∇h(xk+1)−∇h(xk)), x − xk+1〉
� −α−1/2χk‖ek+1‖X′

√
�1(x, xk+1) ∀x ∈ K ∩ S̄. (10)

Therefore, the claim above follows immediately.
– Now, let us trace the situation when K is not bounded, nevertheless condition

(8) ensures (5) with
∑∞

k=1 χ−1
k δk < ∞ (hence, condition (9) is superfluous). In

this case, however, the use of a suitable operator B �= 0 is in essence.
We suppose that X = H 1(�) (where � is an open domain in R

n), that K ⊂
{x ∈ X : ‖x‖L2(�) � 1} is an unbounded set in X and B : X → X′ is given
by 〈Bx, x〉 = ‖∇x‖2

L2(�). A similar choice of B is quite realistic for elliptic
problems. In this situation, for any functional h satisfying B1–B3,

�(x, y) + 1 � 1

4
‖x − y‖2

L2(�) + 〈B(x − y), x − y〉

� 1

4
‖x − y‖2

H 1(�)
∀x ∈ K ∩ S̄, y ∈ K ∩ S,

is valid, hence setting α � 1/4 in (2), one gets

�1(x, y) = α‖x − y‖2
H 1(�)

∀x ∈ K ∩ S̄, y ∈ K ∩ S.

Now, the same arguments as in the case of a bounded set K enable us to conclude
that (7) implies (5) with δk = α−1/2χk‖ek+1‖X′ .
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– Return to the general process, assuming that g = h and

�(x, y) � m‖x − y‖2 ∀x ∈ S̄, y ∈ S (11)

is valid with m > 0. Here, boundedness of K is not supposed. However, α � m

ensures

�1(x, y) = α‖x − y‖2, (12)

and relation (10) follows as above. Hence, condition (8) suffices to conclude that
(5) is valid with

∑∞
k=1 χ−1

k δk <∞.
Note that in the particular case h(x) = 1

2‖x‖2 we deal with the classical proximal
point method, and (8) is nothing else as the known criterion (A’) in [27]. Relation
(12) holds also true if the functional h is chosen as in methods with weak regulariz-
ation or regularization on a subspace (see [18, 19]). Thus, the convergence results
established below can be applied to these methods in the form (7), (8).

REMARK 2. Eckstein connects the discrepancy in the convergence conditions (8)
(for the classical method) and (8),(9) (for non-quadratic proximal methods) with
the fact that ‘no triangle inequality applies’ to Bregman distance D(x, y) = h(x)−
h(y) − 〈∇h(y), x − y〉 with non-quadratic h. However, the analysis above shows
that probably the ‘sufficiency’ of criterion (8) depends more on the fulfillment of
relation (12) for some α > 0.

3. Solvability of Problem (P k
δk

)

In this section we show existence and uniqueness of a solution of Problem (P k
0 ),

and the inclusion xk+1 ∈ S for a solution of (P k
δk

).
According to B1, the subdifferential operator ∂η is maximal monotone. The

conditions B1–B3 and B9 provide that D(∂η) = S. Indeed, the inclusion D(∂η) ⊃
S follows from B2, and assuming that ∂η(x) �= ∅ holds for some x ∈ S̄\S, in view
of B3 we obtain

〈∇η(y) − ξ(x), y − x〉 > 0 ∀y ∈ S, ξ(x) ∈ ∂η(x).

But, for a fixed ξ(x) ∈ ∂η(x), due to B9, there exists y ∈ S such that ∇η(y) =
ξ(x), in contradiction with the last inequality.

In turns, the conclusion D(∂η) = S means that D(∇h) = S, and the both
operators ∇η and ∇h are maximal monotone.

Thus, if Problem (P k
0 ) is solvable, then it has a unique solution, here denoted by

x̄k+1 (the strict monotonicity of Q+χk∇h on S ∩Kk ∩D(Q) follows immediately
from A3 and B3), and x̄k+1 ∈ S. Then, of course, the solution xk+1 of Problem
(P k

δk
) exists, and D(∇h) = S provides xk+1 ∈ S.

Because the operator ∇h is maximal monotone and S is an open set, the max-
imal monotonicity of the operators Q+χk∇h+NKk and x → Q(x)+χk∇h(x)+
NKk(x)−χk∇h(xk) follows from A1, A2 and A5 according to Theorem 1 in [26].
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Since Kk ∩ S �= ∅, the Moreau-Rockafellar theorem yields

NKk∩S̄ = NKk +NS̄ .

Taking into account that x̄k+1 (if it exists) belongs to S, this permits to transform
Problem (P k

0 ) into the inclusion

0 ∈ Q(x)+ χk∇h(x)+NKk (x)− χk∇h(xk)

= Q(x) − χkBx +NKk(x)+ χkBxk + χk

(∇η(x)−∇η(xk)
)

,

and with regard to A1, A3 and 0 < χk � 1, the operator

x → Q(x)− χkBx +NKk (x)+ χkBxk

is maximal monotone (see Proposition 2.6 in [25]). Now, applying Lemma 5 in [6],
one can conclude the solvability of Problem (P k

0 ). So, the following statement is
proved.

THEOREM 1. Let the conditions A1–A3, A5 and B1–B3, B9 be valid. Then Prob-
lem (P k

0 ) is uniquely solvable (for each k), the sequence {xk} is well defined and
contained in S.

REMARK 3. Using instead of B9 the condition (see [14])

{vk} ⊂ S, vk ⇀ v ∈ S̄\S �⇒ lim
k→∞〈∇h(vk), y − vk〉 = −∞ ∀y ∈ S,

the conclusion D(∂η) = S can be obtained from Lemma 1 in [6], and a result on
solvability like Theorem 2 in [6] holds also true.

4. Convergence analysis

In the sequel, we need the following assertion proved in [16].

LEMMA 1. Let C ⊂ X be a convex closed set, the operators A : X→ 2X′, A+
NC be maximal monotone and D(A) ∩ C be a convex set. Moreover, assume that
the operator

AC : v→
{
A(v) if v ∈ C

∅ otherwise

is locally hemi-bounded at each point v ∈ D(A) ∩ C and that, for some u ∈
D(A) ∩ C and each v ∈ D(A) ∩ C, there exists ζ(v) ∈ A(v) satisfying

〈ζ(v), v − u〉 � 0.

Then, with some ζ ∈ A(u), the inequality

〈ζ, v − u〉 � 0

holds for all v ∈ C.
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REMARK 4. Here, a weakened notion of the local hemi-boundedness is sup-
posed. We call an operator M : X → 2X′ locally hemi-bounded at a point v0,
if for each v, v �= v0, there exists a number t0(v0, v) > 0 such that the set

⋃
0<t�t0(v0,v)

M(v0 + t (v − v0)) is bounded in X′.

The standard notion supposes the boundedness of
⋃

0�t�t0(v0,v)

M(v0 + t (v − v0)).

This relaxation may be significant, see - for instance - the following example: M =
NC , with C = {v ∈ R

n :∑n
i=1 v2

i � 1}, n > 1.

LEMMA 2. Let the sequence {xk}, generated by the GPPM, belong to S and as-
sume that, for some x∗ ∈ X∗∩S̄, condition A6 is valid. Moreover, let the conditions
A3, A5 and B1, B2, B5 be fulfilled. Then the sequence {�(x∗, xk)} is convergent,
{xk} is bounded, and limk→∞ �(xk+1, xk) = 0.

Proof. We rewrite

�(x∗, xk+1)− �(x∗, xk) = s1 + χ−1
k s2 + s3,

with

s1 = h(xk)− h(xk+1)+ 〈∇h(xk), xk+1 − xk〉,
s2 = χk〈∇h(xk)−∇h(xk+1), x∗ − xk+1〉,
s3 = 1

2
〈B(xk+1 − x∗), xk+1 − x∗〉 − 1

2
〈B(xk − x∗), xk − x∗〉.

In view of �1(x, y) � �(x, y) + 1, A5 and Kk ⊃ K, the inequality

〈q(xk+1)+ χk(∇h(xk+1)−∇h(xk)), x∗ − xk+1〉 � −δk

√
�(x∗, xk+1)+ 1

follows immediately from (5). Together with A3, this yields

s2 � 〈q(xk+1), x∗ − xk+1〉 + δk

√
�(x∗, xk+1)+ 1

� 〈q∗(x∗), x∗ − xk+1〉 − 〈B(x∗ − xk+1), x∗ − xk+1〉 + δk

√
�(x∗, xk+1)+ 1

� 〈q∗(x∗), wk+1 − xk+1〉 + 〈q∗(x∗), x∗ − wk+1〉
− 〈B(x∗ − xk+1), x∗ − xk+1〉 + δk

√
�(x∗, xk+1)+ 1, (13)

where we take q∗(x∗) and wk+1 = wk+1(xk+1) according to A6. From the defini-
tion of x∗ and q∗(x∗), one gets

〈q∗(x∗), x∗ − wk+1〉 � 0, (14)
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and (13), (14) and A6 permit us to conclude

s2 �c(�(x∗, xk+1)+ 1)ϕk − 〈B(x∗ − xk+1), x∗ − xk+1〉
+ (1+ �(x∗, xk+1))δk.

With regard to 0 < χk � 1, this leads to

χ−1
k s2 + s3 � �(x∗, xk+1)

(
cϕk

χk

+ δk

χk

)
+ cϕk

χk

+ δk

χk

− 1

2
〈B(x∗ − xk+1), x∗ − xk+1〉 − 1

2
〈B(x∗ − xk), x∗ − xk〉.

But

〈B(x∗ − xk+1), x∗ − xk+1〉 + 〈B(x∗ − xk), x∗ − xk〉
× 1

2
〈B(xk+1 − xk), xk+1 − xk〉

is obvious, and taking into account the definition of � and the convexity of h,

s1 + χ−1
k s2 + s3 � �(x∗, xk+1)

(
cϕk

χk

+ δk

χk

)
+ cϕk

χk

+ δk

χk

− 1

4
〈B(xk+1 − xk), xk+1 − xk〉

− [
h(xk+1)− h(xk)− 〈∇h(xk), xk+1 − xk〉]

� �(x∗, xk+1)

(
cϕk

χk

+ δk

χk

)
+ cϕk

χk

+ δk

χk

− 1

2
�(xk+1, xk).

Hence,

�(x∗, xk+1)

(
1− cϕk

χk

− δk

χk

)
� �(x∗, xk)+ cϕk

χk

+ δk

χk

− 1

2
�(xk+1, xk)

(15)

is valid. But, condition A5 implies the existence of an index k0 such that

cϕk

χk

+ δk

χk

� 1

2
for k � k0,

i.e.,

1 �
(

1− cϕk

χk

− δk

χk

)−1

� 1+ 2

(
cϕk

χk

+ δk

χk

)
� 2.

Thus, for k � k0, we obtain from (15) and �(xk+1, xk) � 0 that

�(x∗, xk+1) �
[

1+ 2

(
cϕk

χk

+ δk

χk

)]
�(x∗, xk)

+ 2

(
cϕk

χk

+ δk

χk

)
− 1

2
�(xk+1, xk), (16)
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and, in view of condition A5, Lemma 2.2.2 in [23] provides that the sequence
{�(x∗, xk)} is convergent. Now, boundedness of {xk} follows from B5, and using
again (16) one gets limk→∞ �(xk+1, xk) = 0. �

In the sequel, we deal in particular with the case that, besides the usual property
of maximal monotonicity, the operator Q is pseudomonotone and paramonotone.
Just this class of operators is considered in [6].

Let us recall the corresponding notions.

DEFINITION 1. The operator A : X → 2X′ is called pseudomonotone if it
satisfies the following condition: if {vk} ⊂ D(A) converges weakly to v ∈ D(A)

and

limk→∞〈wk, vk − v〉 � 0

holds with wk ∈ A(vk), then for each y ∈ D(A) there exists w ∈ A(v) such that

〈w, v − y〉 � limk→∞〈wk, vk − y〉.
Note that this notion of the pseudomonotonicity (see [21], Sect. 2.2.4 for single-
valued operators, where boundedness of A is also supposed) should not be mixed
up with those used in a couple of recent papers on variational inequalities (see, for
instance [10]).

DEFINITION 2. (see [9]) The operator A : X→ 2X′ is called paramonotone& in
a set C ⊂ X if it is monotone and

〈z − z′, v − v′〉 = 0 with v, v′ ∈ C, z ∈ A(v), z′ ∈ A(v′)

implies z ∈ A(v′), z′ ∈ A(v).

We will use the following property of a paramonotone operator A in C (cf. [6]):
if x∗ solves the variational inequality

〈A(x), y − x〉 � 0 ∀y ∈ C (17)

and for x̄ ∈ C there exist z̄ ∈ A(x̄) with 〈z̄, x∗ − x̄〉 � 0, then x̄ is also a solution
of (17).

LEMMA 3. Let the assumptions of Lemma 2 as well as the conditions A1, A4
and B6, B7 be valid. Moreover, suppose that one of the following assumptions&& is
fulfilled:

& Operators with this property have been considered earlier by Bruck [5].
&& For a motivation of the inclusion S ⊃ D(Q), which excludes the usual choice of a function h

leading to interior point methods, see [11]. In the case D2, condition A4 can be weakened assuming
that each limit point of {vk} belongs to K (in place of K ∩D(Q)).
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(D1) S ⊃ D(Q), ∇h is Lipschitz continuous on closed and bounded subsets of
S and the conditions of Lemma 1 hold with A := Q, C := K ∩ S̄;

(D2) Q is the subdifferential of a proper convex lower semicontinuous func-
tional f , and f is continuous at some x ∈ K;

(D3) Q : D(Q)→ 2X′ is pseudomonotone operator and Q is a paramonotone
in S̄.

Then the sequence {xk}, generated by the GPPM, is bounded and each weak limit
point is a solution of Problem (P ).

Proof. According to Lemma 2, the sequence {xk} is bounded, hence, there exists
a weakly convergent subsequence {xjk }, xjk ⇀k→∞ x̄. In view of {xk} ⊂ S, A4
and the convexity of S, the inclusion x̄ ∈ S̄ ∩ K ∩ D(Q) (x̄ ∈ S̄ ∩ K in the
case D2) is valid. Due to limk→∞ �(xk+1, xk) = 0, one can use condition B7 with
vk := xjk+1, yk := xjk . This leads to

lim
k→∞‖x

jk+1 − xjk‖ = 0. (18)

If D1 holds, then with regard to the boundedness of {xk}, {xk} ⊂ D(Q), A5
and (18), the relation

lim
k→∞

χjk
〈∇h(xjk+1)−∇h(xjk ), x − xjk+1〉 = 0 ∀x ∈ X (19)

follows immediately.
Now, take (5) with an arbitrary x ∈ K ∩ S̄ and replace q(xk+1) by q(x) ∈ Q(x)

(this is possible in view of the monotonicity of Q). Then, passing to the limit in
the obtained inequality with k := jk, k→∞, due to the boundedness of {xk}, the
definition of �1, A5 and (19), we obtain

〈q(x), x − x̄〉 � 0 ∀x ∈ K ∩ S̄.

The conditions A1 and S ⊃ D(Q) guarantee the maximal monotonicity of the
operator Q + NK∩S̄ ( in fact, Q + NK∩S̄ coincides with Q + NK). Thus, we are
able to apply Lemma 1 with C := K ∩ S̄, A := Q, which ensures that

∃ q(x̄) ∈ Q(x̄) : 〈q(x̄), y − x̄〉 � 0 ∀y ∈ K ∩ S̄.

This yields

0 ∈ q(x̄)+NK∩S̄ (x̄) ⊂ Q(x̄)+NK∩S̄(x̄),

hence 0 ∈ Q(x̄)+NK(x̄) holds, proving x̄ ∈ X∗.
Suppose now that D2 is valid and take x∗ as in A6. With regard to the symmetry

of B a straightforward calculation gives

− 〈∇h(xk)−∇h(xk+1), x∗ − xk+1〉 = �(x∗, xk)− �(x∗, xk+1)

− �(xk+1, xk)− 〈B(xk+1 − xk), x∗ − xk+1〉. (20)
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Using Lemma 2, (18) and 0 < χk � 1, we infer from (20) that

lim
k→∞χjk

〈∇h(xjk+1)−∇h(xjk ), x∗ − xjk+1〉 = 0. (21)

But, relation (5) given with x = x∗ and k := jk implies, due to the convexity of f ,
that

δjk

√
�1(x∗, xjk+1)+ χjk

〈∇h(xjk+1)−∇h(xjk ), x∗ − xjk+1〉
� f (xjk+1)− f (x∗). (22)

Taking the limit in (22) as k → ∞, due to Lemma 2, (21), A5 and the lower
semicontinuity of f , one gets f (x̄) � f (x∗). Thus, 0 ∈ ∂ (f (x̄)+ δ(x̄|K)), δ(·|K)

the indicator functional of K, and the Moreau–Rockafellar theorem provides x̄ ∈
X∗.

Finally, let us consider the case D3. Using equality (20) with k := jk and x̄ in
place of x∗, from (18), Lemma 2 and condition B6 for vk := xjk+1, yk := xjk , we
conclude that

lim
k→∞
〈∇h(xjk+1)−∇h(xjk ), x̄ − xjk+1〉 = 0.

Thus, (5) taken with x = x̄ implies

limk→∞〈q(xjk+1), xjk+1 − x̄〉 � 0,

and the pseudomonotonicity of Q provides the existence of q(x̄) ∈ Q(x̄) such that

〈q(x̄), x̄ − x∗〉 � limk→∞〈q(xjk+1), xjk+1 − x∗〉.
Now, from (5) and relation (21), which is true also in this case, one gets 〈q(x̄), x̄−
x∗〉 � 0. Therefore, the above mentioned property of paramonotonicity permits to
conclude that x̄ ∈ X∗. �
THEOREM 2. Let the conditions A1–A5 and B1–B9 be valid, and condition A6
hold for each x ∈ X∗ ∩ S̄ (constant c in A6 may depend on x). Moreover, let the
operator Q possess one of the properties D1, D2 or D3 in Lemma 3. Then the
sequence {xk}, generated by the GPPM, converges weakly to a solution of Problem
(P ).

Proof. The existence of the sequence {xk} and the inclusion {xk} ⊂ S are
guaranteed by Theorem 1. Denote

dk(x) = �(x, xk)− 1

2
〈Bx, x〉 − h(x).

According to Lemma 2, the sequence {�(x, xk)} converges for each x ∈ X∗ ∩ S̄,
hence, the sequence {dk(x)} possesses the same property.
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Boundedness of {xk} was proved in Lemma 2, and Lemma 3 yields that each
weak limit point of {xk} belongs to X∗ ∩ S̄.

Assume that {xjk } and {xik } converge weakly to x̄, x̃, correspondingly. Then it
holds x̄, x̃ ∈ X∗ ∩ S̄. Let

l1 = lim
k→∞ dk(x̄), l2 = lim

k→∞ dk(x̃).

Obviously,

l1 − l2 = lim
k→∞(dk(x̄)− dk(x̃)) = lim

k→∞〈∇h(xk)+ Bxk, x̃ − x̄〉.

Considering the latter equality now for the subsequences {xjk } and {xik }, one can
conclude that

lim
k→∞
〈∇h(xjk )+ Bxjk −∇h(xik )− Bxik , x̃ − x̄〉 = 0. (23)

A comparison of (23) and B8 (given with vk := xjk , yk := xik ) indicates x̃ = x̄,
proving uniqueness of the weak limit point of {xk}. �
REMARK 5. Theorem 1 remains true if condition B9 is replaced by any other
condition guaranteeing that {xk} is well defined and {xk} ⊂ S (see, in particular,
Remark 3). If we replace S ⊃ D(Q) by the weaker requirement that

S ⊃ D(Q) ∩ (∪k�k0K
k)

is valid for an arbitrary large k0, then — with evident technical alterations — the
proofs of Lemma 3 and Theorem 2 hold true.
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